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Abstract. We discuss the linearization of the equations of motion around a periodic orbit 
in a conservative two degree of freedom Namiltonian system, with an emphasis on 
computationally useful formulae. Indices are defined using singularities in projections. 
Conjugate points, self-conjugate points and the possihlity of assigning a symbolic code 
are discussed. 

1. Introduction 

Most investigations of nonlinear dynamical systems require the study of periodic 
motions and their stability properties, e.g. in bifurcation theory. More recently, it has 
been realized that in strongly chaotic systems periodic orbits form a strictly organized, 
rigid skeleton, which in turn may be used to evaluate phase space averages; the stability 
enters in the weights assigned to every orbit (Cvitanovii: 1988, Artuso er a1 1990). 

However, besides stability, there is another characteristic of trajectories, describing 
how neighbouring orbits wind around the leading one. This quantity is called the 
winding number or, because of its relation to singularities, the Morse or Maslov index 
(by ‘index’ we mean here any integer assigned to a trajectory). In general dynamical 
systems, it has attracted attention only recently (e.g. Ruelle 1985, Dressler and 
Lauterborn 1990) but in semiclassical mechanics this index plays an important and 
peculiar role (Gutzwiller 1971, Berry and Mount 1972, Eckmann and Senior 1976, 
Percivall977, Maslov and Fedoriuk 1981). In a previous report (Eckhardt and Wintgen 
1990) we have demonstrated that this index can also he used profitably in a purely 
classical context, namely to assign a symbolic code to trajectories. Numerical experience 
suggests that this coding is global, in contrast to the local symbolic codes that follow 
from the horseshoe construction (Moser 1973). Understanding the global organization 
of periodic orbits is important for the cycle expansion approach to phase space averages 
(Cvitanovii 1988). 

To motivate the connection between the classical coding and the index we recall 
the basics of pinball scattering (Eckhardt 1987, Gaspard and Rice 1989). Consider an 
arrangement of convex bodies in the plane and a point particle elastically reflected off 
the bodies. Once the bodies are labelled, one may code a trajectory by the string of 
symbols representing the collision sequence. The corresponding quantum problem is 
to solve the Helmholtz equation A $ +  k 2 $ = 0  for the wavefunction #, required to 
vanish on the surface of the bodies, with appropriate ingoing and outgoing boundary 
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conditions. Semiclassically, the scattering process is described by the superposition of 
waves that propagate along classical trajectories with specified ingoing and outgoing 
momenta, but arbitrary impact parameter. As these waves evolve, their phase increases 
with the classical action divided by h. However, at every collision with the walls of 
the scattering bodies, there is a phase loss of R due to the boundary conditions. The 
total accumulated phase loss thus counts the number of collisions with the walls, but 
it  is not directly accessible, since it appears in the exponent and is taken modulo 211. 

What happens classically at these collisions is that a local coordinate system formed 
of vectors parallel and perpendicular to the trajectory changes orientation. This feature 
of a collision can easily be carried over to smooth potentials and may be used to define 
a ‘collision with a potential boundary’. If these collisions occur in well separated 
regions in phase space, one may assign labels to these regions and again code a 
trajectory by the collision sequence (Eckhardt and Wintgen 1990). Smooth systems 
differ from billiards in that the change of orientation may take place gradually (a 
’rotation’ around the orbit) and that the collisions are ‘softer’, the phase loss being 
only R / 2 .  

The above example of a local coordinate system is motivated in position space. 
The coordinate system corresponds to the projection of 2 out of 4 phase space 
coordinates into position space. The singularities of this projection both indicate a 
change of orientation and give rise to the phase loss in semiclassical mechanics. 
Different local coordinate systems or different projections (say onto position space or 
onto momentum space or some combination) may yield different positions for sin- 
gularities, but theorems of differential geometry assure that the total number of 
singularities is invariant (Milnor 1963, Creagh ef a /  1990). The number of such 
singularities is a classical index. 

In this contribution we discuss some properties of these indices and methods for 
their calculation. This problem has been considered before by Gutzwiller (1971) for 
the anisotropic Kepler problem, by Mohring ef al (1980) for general systems, by 
Littlejohn and Robbins (1987) for integrable systems and by Creagh et a /  (1990) for 
unstable orbits. We only consider conservative two degree of freedom Hamiltonian 
systems, with four-dimensional phase space and three-dimensional energy surface. The 
equations of motion are given by four first order differential equations, and a 4 x 4  
monodromy matrix relates small deviations from the trajectory at the initial and final 
point. The stability properties of the trajectory follow from the eigenvalues of this 
matrix, and the indices we are interested in from its time evolution. The relevant 
information is contained in a 2 x 2 submatrix, obtained after elimination of two trivial 
directions. The elements of the reduced monodromy matrix enter the semiclassical 
expression for the Green function in position space (Gutzwiller 1971) and the 
expression for the (Wigner) propagator in phase space (Berry 1989). 

The main point of the present paper is to discuss in some detail how the reduced 
monodromy matrices can be obtained in a computationally useful way and how they 
relate to other representations, such as those derived from Maupertuis’s principle. 
there is some freedom in the choice of the local coordinate systems; we discuss two, 
one in ‘configuration space’ and one in  ‘phase space’. The labels should not be taken 
literally (since both systems are of course defined in  entire phase space), but more to 
indicate that they are useful for calculating the entries in the position space Green 
function and in the phase space Wigner propagator, respectively. 

The outline of the paper is as follows, In the next section we discuss the linearized 
classical motion and introduce the concept of the monodromy matrix. We define two 
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local coordinate systems and present the reduction of the monodromy matrices and 
of the linearized equations of motion for them. In section 3, we discuss the winding 
numbers and their computations. The properties of the different coordinate systems 
are illustrated for a simple example in section 4. We conclude with some final remarks 
in section 5 .  

2. Linearized classical motion 

2.1. The monodromy matrix 

We will focus on the simplest non-trivial case of a two degree of freedom system with 
time independent Hamiltonian of the form kinetic plus potential energy, 

H(!2,9’)= P2/2+ V ( 2 )  (1) 

where 9 = (x, y )  and 9’ =(U, U )  are coordinates and canonically conjugate momenta, 
respectively. The equations of motion are 

3=9’ (2a) 

@ = -d V l J 2  (2b) 

or, 
aH ?= J- 
ay 

(3) 

with y = (2, 9)  and J a 4 x 4 matrix composed of 2 x 2 unit matrices I, 

J = (  - I  0 ’). 
A periodic orbit is a periodic solution of the equations of motion (2) or (3), 

yDo( T )  = y,,(O), where T is the period of the orbit. Since the Hamiltonian is time 
independent, energy is conserved along the trajectory. 

Of central interest here is the behaviour of trajectories in the neighbourhood of 
periodic orbits. Let a trajectory which starts close to the periodic orbit, y ‘ (0)  = ypo + Sy’, 
arrive at the phase space point y”( T )  = yp. + ay” after one period. If the initial displace- 
ment is sufficiently small, then the final displacements will be small as well and there 
is a linear relationship between 6y‘  and Sy“, 

Sy“=  A S y ‘ .  (5 )  

The matrix A of this linear transformation after a full period is called the monodromy 
matrix of the periodic orbit. In a slight extension of terminology, we will also refer to 
A ( ( )  for intermediate times as monodromy matrix, since a convenient way to find 
A( T )  is to integrate equations of motion obtained by expanding Hamiltons equations 
consistently up to first order in the deviations from the orbit. One finds 

A=2A A ( 0 )  =I  (64) 

where the (time-dependent) linearization 2 of the flow along the trajectory is given by 

2 = J 7  J 2 H I  JY yn,,ii I 
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The matrix A is symplectic, 
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A+JA = J .  (7) 

(To see this, differentiate with respect to time and use 2+J - J 2  = 0). From this property 
there follow relations between eigenvalues. If A is a complex eigenvalue, then in general 
l / A ,  A* and l / A *  are eigenvalues as well. As we will show shortly, for a two degree 
of freedom system two eigenvalues are equal to one, so the remainig two come as a 
pair A, I l A .  

Even without solving the equations of motion for A, we can eliminate two trivial 
eigendirections. If the initial displacement is along the orbit, then it will be the same 
after one period. Thus the phase space velocity is an eigenvector to the eigenvalue 1 .  
Similarly, if the displacement leaves the energy shell, then the projection perpendicular 
to the energy shell is also conserved, since the energies of both trajectories do  not 
change. The non-trivial information in the matrix A thus concerns the evolution of 
deviations perpendicular to the orbit on the energy shell. In the next section we will 
present two coordinate systems that eliminate the trivial directions. 

The equations of motion (6) may be derived from a (time dependent) 
Hamiltonian h, 

h (82,8P) = $8P2 + $82 ‘V, 89 (8) 
where V, = (JV/J$J2j) denotes the Hessian matrix of the potential. We will use only 
canonical transformations, so the form of the equations and the existence of a 
Hamiltonian is always assured. However, since the transformations are time dependent, 
the new Hamiltonian will have additional terms from the derivative of the generator. 
Using canonical transformations is not strictly necessary (see Gutzwiller 1971) but it 
shows for instance that the vector normal to the energy shell and the translation along 
the trajectory are canonically conjugate vectors. 

2.2. The monodromy matrix in local coordinates 

The monodromy matrix A consists of the 16 derivatives of final coordinates with 
respect to initial coordinates, Au = ay:/Jy;, An initial displacement along the periodic 
orbit, Sy’= yll8y with yil = yDo(0), will be mapped back onto itself, ay”= ay’, whence 

Yll = AYII. ( 9 0 )  

Multiplying equation ( 9 a )  with &J from left and using equation (7) we find Jy l i  to 
be an eigenvector of A+ with eigenvalue 1, 

J Y I I  = A+J YII  . ( 9 6 )  

By equation (3) ,  the vector -JylI  is just the gradient of the Hamiltonian and therefore 
points perpendicular to the energy shell. 

To complete our coordinate system, we need two more vectors on the energy shell. 
We take advantage of the remaining freedom to select coordinate systems satisfying 
further requirements. One coordinate system is non-singular and well behaved 
everywhere in phase space. Another is motivated by the desire to obtain the entries in 
the semiclassical expression for the propagator in configuration space representation. 
(Here, we will not discuss a related coordinate system that yields the entries for the 
momentum space representation). To avoid confusion, we will use capital and small 
letters and indices respectively to distinguish between the two coordinate sets. 
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2.2.1. Local conjiguration space coordinates. Our first coordinate system is close to the 
one introduced by Gutzwiller (1971). We construct the transformation matrix A from 
four column vectors, A = ( yI,, yQ, yE, yp). The first one is directed along the orbit. The 
third vector yE, points out of the energy shell; we take it to be yE=(O, 0, x, j ) /p2,  
wherep2 = x2+y2. The normalization is chosen so as to simplify the linearizedequations 
of motion, equation (18) below. The second vector, yQ, is a displacement perpendicular 
to the orbit in configuration space, yo- ( -y ,  x, *, *). The non-zero elements marked 
oy SLUS arc rrcscmaiy io nccp ~ i i c  uispiacrrnrnr on the energy shell. F e  iahe ;ya= 
(-j, x, ax, my)/p, where a = (xu-yu)/p2 follows from the requirement that yQ be 
orthogonal to J y l ~ .  The last vector, yp, is a displacement of the momenta perpendicular 
to the orbit in configuration space, yp= (0, 0, -y, x)/p; it obviously remains on the 
energy shell. 

L.. ..̂ .. --- 3 .L. ,l:--, ~ 

The transformation A = ( yIl, yQ, yE, yp) (together with its inverse A-'), 

A =  

0 a y / P  Y / p 2  i / p  
(10) 

U P 2  YIP2 0 

A-' = 
x 

is canonical, A+JA= J, and has determinant one. In these coordinates the monodromy 
matrix reads 

where the zeros and ones follow from equations (9) and the normalization of the 
column vectors in A. The matrix elements marked by a star are in general non-zero 
but of no further interest. The particular form of the third row expresses energy 
conservation, whereas the first column is the eigenvector along the periodic orbit. The 
non-zero matrix elements of the first row are due to the fact that all trajectories are 
followed for the same time interval T. Their endpoints are not necessarily located in 
the plane perpendicular to the orbit, even if started there. If the running time of the 
trajectories are shortened by the amount calculated from the first row, their endpoints 
will be in that plane. 

This coordinate system is peculiar, if the orbit is self-retracing, i.e. runs up to the 
boundary of the classically allowed region V ( x ,  y )  = E where x = y = 0. Then the 
transformation A becomes singular: a is well behaved and vanishes at the turning 
point, but yQ and yp change their orientation discontinuously, and yE diverges. These 
difficulties can be avoided using orthogonal coordinates in phase space as described 
in the next section. 

The reduced 2 x 2 matrix M = ( M , )  contains the non-trivial information and is 
called the Poincari return map of the orbit. Its elements M ,  are precisely the quantities 
which enter the semiclassical Green function expressed as the sum over oscillating 
contributions from classical trajectories (Gutzwiller 1971, Bogomolny 1988). The ampli- 
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tudes are proportional to (M, ,p) - ' / '  and therefore diverge at  zeros of MI2 or at zeros 
of the speed p .  The latter vanishes only at turning points of self-retracing orbits, where 
usually M , ,  # 0. 

2.2.2. Local phase space coordinates. Alternatively, we may construct a vierbein in 
phase space using the vector y11 pointing along the trajectory, y,-aH/ay pointing out 
of the energy shell, and two other vectors constrained only by orthogonality. Normal- 
ization of the vectors is again chosen so as to keep the linearization simple. We take 

where q = lylil is the phase space velocity. As in the preceding section, yq and yp  are 
perpendicular to the orbit in configuration space, but they differ from yQ and yp  in 
the elements necessary to ensure orthogonality. Except for trivial cases, the phase 
space velocity q is always non-zero. Hence the coordinate system is defined everywhere 
and varies smoothiy aiong the trajectory. i h e  canonicai transiormation a and the 
inverse a-' read 

B Eckhardt and D Wintgen 

YII 4 = ( - y  , x , u 3 - '  u I T l q  = -JY11/q2 yP=-Jyq  (12) 

1 - y / q  - l i l q2  -U/q  x / q 2  y / q 2  d l q 2  v / q =  

- t i l s  Y l q 2  * I 4  - V I q  CIS - 3 l q  X I q  

- Y / q  U / q  - 4 q  , (13)  
x 3 a =  1 ;;; -"f f l q  - 3 l q  U I q )  - U  -U 

In these coordinates, the monodromy matrix again takes on the form given in equation 
( 1  l) ,  but with different non-zero matrix elements. There is a similarity transformation 
between the non-trivial 2 x 2 symplectic submatrix M in the previous coordinate system 
and m as obtained from the present one, 

where pll = ell @ / p  = (xu +yU) /pz  and pL = e, . @ / p  = (xu - j u ) / p z  are the (normal- 
ized) accelerations parallel and perpendicular t o  the orbit. 

The actual matrices M and m generally differ in their elements, but contain similar 
information. For instance, the stability exponent A, defined as the logarithm of the 
large:! eigex:,a!ue of !he nxxodrozy  =mix ,  is the same for bo!h nx!rices axd is 
given by 

2cosh(A) =Tr(M) =Tr(m). (15) 

The winding number may also b e  obtained from the reduced matrices, but one then 
needs :he equations of motion for M(t) and m ( t )  in local coordinates. These are 
derived in the next section. 

2.3. The linearization in local coordinates 

The local coordinate transformations A and a separate the non-trivial from the trivial 
parts of the Hamiltonian flow. We wish to express the linearized equations of motion 
in these local coordinates, e.g., 

M=LM m = Im. (16) 

We find 
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and an analogous expression for a. Evaluation of the matrix products in equation (17) 
is straightforward but tedious and may be done conveniently with the help of a symbolic 
manipulation program such as REDUCE. In the configuration space coordinate system 
(10) equation (17) then yields 

/o  * * o \  

from which the reduced linearization matrix L = ( Lj i )  may be read off, 

L = (  - K  O 0 1 )  

The zeros in the third row and in the first column of 3' guarantee that the structure 
( 1  1 )  of the monodromy matrix is conserved in time. The formal 'curvature' K, is given 
by 

K = 3 ( e , .  @/p)2+e IV ,e ,  

= 3 m 2  + e:V, e, 

= 3(XU -?;U)' /p"+ (V,,Y'+ v&-2 V x y X j ) / p 2 .  (18c) 
An equation similar to (186) may also be derived if the principle of Maupertuis is 

used (Synge 1926, Whittaker 1961, p419, Arnold 1978, appendix 1). According to this 
principle, classical trajectories are geodesics on the 'action surface' with a metric tensor 
g,, = 2( E - V)S,. From this metric one may derive the Riemannian curvature KR, which 
then enters into the Jacobi equation for small deviations. However, the curvature K,, 

( E  - V)(  V,, + Vyy) + V: + V: 
K ,  = 

4( E - V)' 

is singular as one approaches the boundary of the classically allowed region! The 
curvature K (18c), however, is well behaved for self-retracing orbits, even at turning 
points (as noted before, a vanishes there and the second term approaches a constant). 

Comparing the behaviour of the reduced equations (18) and the full transformation 
(10) near a turning point of a self-retracing orbit, one notes that the local coordinates 
yQ and yp change their orientation discontinuously, but the differential equations (18) 
are smooth. The monodromy matrix M is not affected by the abrupt change in the 
orientation of the coordinate system (see the example in section 4). For orbits passing 
nearby, however, the orientation of the coordinate system does change and the curvature 
K in the local equations of motion may become large, causing numerical problems. 
These 'unnoticed' changes in the orientation of the coordinates at turning points have 
to be kept in mind when calculating indices (section 3 below). 

The calculation for the alternative local coordinate set gives similar results. We find 

/=(-"e -"a) 
with 

aq2 = i u (  v,, - 1) + yu( v,, - 1) -(xu + j u )  v,, 
bq2= (x'+ u2)( V,,+ 1 ) + ( j 2 +  U*)( Vy,+ 1 ) + 2 ( i j -  uti) V,, (206) 
cq2=(i2+)j2)(v"x+ Vy,)+2(U*+u'). 
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Now there is no problem with singularities. The behaviour at turning points is smooth 
since yg and yp do not change their orientation. In fact, the discontinuous turnaround 
of the configuration space coordinates yo and yp is replaced by a smooth rotation of 
the phase space coordinates. This will be illustrated in section 4 for a simple example. 

Finally we note that the local coordinate systems defined by equations (10) and 
(12) are identical whenever the acceleration @ vanishes, e.g. in a local extremum of 
the potential. For billiard systems this is globally fulfilled. The final monodromy 
matrices M( T )  and m( T )  after one period are then identical, see equation (14). but 
their derivatives generally differ! The reason for this is that even though the transforma- 
tions A and a are identical, A and a and hence L and I are different. 

B Eckhardt and D Wintgen 

2.4. Discrete symmetries: the monodromy matrix in the fundamental domain 

Rather often, dynamical systems have discrete symmetries such as reflections on planes 
or rotations in configuration space. It is then convenient to desymmetrize the problem 
by going into the fundamental domain (CvitanoviC and Eckhardt 1989). All information 
of the full motion is contained in the desymmetrized motion of the fundamental domain. 

The discrete symmetry can also show up in that the trajectory passes through a 
symmetry image of the initial condition after some fraction of the period. The further 
evolution may then be obtained from symmetry images of the initial segment. The 
action of the orbit and the period, being scalars, are simply additive under the symmetry 
transformations. The monodromy matrix, however, is sensitive to the type of symmetry 
transformation. 

Specifically, let us consider a potential V with reflection symmetry around the 
y-axis, V ( x ,  y )  = V ( - x ,  y ) .  A symmetric periodic orbit of period T starting from y,,(O) 
will have reached yp0( T / 2 )  = IIxypo(0) after time T / 2 ,  where 

/-1 0 0 o\  

It will therefore appear closed with the period T / 2  in the fundamental domain, where 
yp0 and IIxypo are identified. for the linearization this means that we can write 

.U( T) = (IIx.U( T/2))2. (22) 

The reduced monodromy matrix M in the fundamental domain may be read off from 
A-'(0)IIx.U( T/2)A(O). As a result, all element of M change sign. In particular, the 
type of an unstable periodic orbit changes from hyperbolic to inverse hyperbolic and 
vice versa. 

The sign change occurs for reflections only; for rotations the matrix elements remain 
the same. 

3. The winding number and classical indices 

The monodromy matrices are not invariant under linear transformations but their 
eigenvalues (or equivalently the trace and the determinant) are. For stable periodic 
orbits the eigenvalues may be written in the form e*2nim where 4 is the winding number. 
It describes the number of turns of neighbouring trajectories around the reference 
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orbit in phase space. For unstable orbits, the eigenvalues are real pairs, either e** 
(hyperbolic orbit) or -e** (inverse hyperbolic orbit) with A the stability exponent (the 
Lyapunov exponent A is a divergence rate, A = A /  T ) .  Nevertheless, by following the 
monodromy matrix along the orbit, one can define a winding number. Formally, the 
eigenvalues are then exp*(A+2rri+) where @ can take on integer (hyperbolic orbit) 
or half integer (inverse hyperbolic orbit) values only. Hence, for unstable orbits the 
discrete value 24 can be viewed as a classical index. 

in  the next section we will describe how to compute the winding number @ for 
unstable orbits. For stable orbits only minor additional considerations are necessary, 
which are described at the end of the chapter. 

3.1. The winding number in global coordinates 

may be written uniquely as a product of two symplectic matrices, one positive definite 
symmetric (T) and one orthogonal (R) (Littlejohn 1986). Writing 1 in the form of 
block 2 x 2  matrices (coordinates being as previously 2, 9). one finds 

* 1 ~  poiar ~ecomposi~ ion  theorem for sympieciic maitices says that any such niairix 

The winding number is contained in the orthogonal transformation R, since det(R, + 
iR2)=exp(2?ii$) is just a phase. In practice, it is not necessary to decompose 1, 
because the determinant of A+ iB can also be used to determine d.  To see this, calculate 

det(A+iB) = e2-" det(T,) det(l+iT;'T,). (24) 
Frnm th- A&n;t;nm ,fT;+ fnllnwC th.t T ; r  n n a ; t i x i r  rlefin;ta ~ n r l  T-'T- ;Q r e n l  c r r m m r t r i r  * L"... "IL.II...".. "L .I ... ". . I .., y"".'l .* ...... .... - ".... . , . .= .--. .,,, ..... -...... 
Hence the total phase J, of the determinant equals 

J, =argdet(A+iB) =2?r (4+ U). (25) 

The contribution U of the complex determinant on the R H S  of equation (24) is bounded 
between 0 and i. Furthermore, $ increases monotonically in time because $is positive 
definite for Hamiltonians of the form (1) (Littlejohn 1988). Hence 4 is determined 
uniquely from det(A+iB): During the period T the imaginary part of det(A+iB) 
changes sign exactly n times, with n given by n = 2@. 

3.2. The winding number in local coordinates 

The determination of the winding number in local coordinates is quite similar. For 
the configuration space coordinates (10) the analogue of the imaginary part of the 
determinant ( 2 5 )  is just the matrix element M I > .  Again, the phase @ = arg(M,, +iM,,) 
is monotonically increasing since 6 > 0. Whenever M,>( 1 )  equals zero we have a 
conjugate point, which is a focus for neighbouring trajectories. At a self-focal point, 
MI*( T )  = 0; then trajectories started on the periodic orbit in configuration space but 
with different momenta all return to the starting point. That is to say, deviations in 
momentum space are mapped within momentum space. This also means that either 
the stable or unstable manifold points in  momentum direction. In this sense, selffocal 
points are caustics of the stable and unstable manifolds. There are twice as many 
selffocal points as caustics on a manifold, and the number of caustics is just twice the 
winding number 24 (Creagh et a1 1990). 
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Self-focal points divide the trajectory into segments with different numbers of 
conjugate points. The number of conjugate points equals the maximal one, if the sign 
of M d T )  equals the sign of the trace of M ( T ) ;  otherwise there is one less. The 
maximal number of conjugate points equals half the number of self-focal points. The 
index 24  is given by the maximal number of conjugate points. However, we have to 
add an additional index whenever 9 = 0, e.g. when the trajectory passes a turning 
point of a self-retracing orbit: the local coordinates change their orientation discon- 

Topologically, this type of index belongs to a cusp in the invariant manifolds. 
For the phase space coordinates (12) things change slightly. First of all there is no 

simple geometrical interpretation for the self-conjugate points, where m,>( T) = a y ; / J y ;  
vanishes. The reason is that in contrast to yp the phase space vector yp also contains 
a displacement in the positions. Nevertheless, yp is still directed along a stable (or 

coordinate space (for this reason we call them self-conjugate instead of self-focal 
points). The second difference is that generally the phase $ of m,,+im,,  does not 
increase monotonically. We find sign($)=sign(b), where b is the /,,-element of the 
linearization matrix (20). Nevertheless, the bookkeeping for computing the winding 
number is simple. We have to determine the maximal number of conjugate points as 
described above, but each conjugate point (including the starting point) is now weighted 
with the sign of b. There is no extra index for turning points, because the transformation 
a is non-singular. 

+:-,.n..rl.r h a i t  Ihn mnnnrlrnm., m n t r i v  M . ~ - o i t l ~  h.. ':etln.:"-, th:" 
,1L.Y"""1,, " V L  L l l r  ."".."Y.".l.J .L.'LL..,. I.. l r l l l r l l l ~  1 L p 1 L L 1  " J  1&""1"L6 L L l l J  C,,'u,6C. 

.nst.b!.! inv.ri.n! m??nifn!d, bxt the se!f-conjuga!e poi=! is CO! re!ated to a Foclls in 

3.3. The winding number of stable orbiis 

For stable orbits the eigenvalues of the reduced monodromy matrices equal e*'" = 
e*2ni4, but from the logarithmic eigenvalue ( U /  alone it is not possible to determine 4. 
The computation of q5 is simpler in local coordinates, where it is possible to determine 
4 uniquely after one period. In  global coordinates multiple traversals of the periodic 
orbit must also be considered because of the additional phase U appearing in the total 
phase $ of the determinant ( 2 5 ) .  Hence, we have to test whether 

n ,e P I / - "  

(26)  

is compatible with mutiple traversals j of the oribt, where 4, must equal j4. In (261, 
n is defined as the integer part of the total phase $ divided by n, i.e. as the number 
of changes of sign of the imaginary part of det(A+iB). I f  the hypothesis (26) is 
incompatible with the results for multiple traversals, 4 is given by (26) with n replaced 
by n - 1 .  

It is much easier to determine the winding number using the local phase space 
coordinates (12). Since there are no self-conjugate points for stable orbits, the number 
n of conjugate points (including the weights) always equals the integer part of 24. 
Hence 4 is determined by equation (26) already after one period. Calculating 4 using 
the local configuration space coordinates (10) is only slightly more involved: we have 
to add f for each turning point along the orbit. 

Finally we note, that the analysis presented in this chapter is independent of whether 
we study the monodromy matrix of the full domain or the matrix of the desymmetrized 
fundamental domain. Of course, one has to count only changes of sign in  the continuous 
flow of the appropriate matrix elements, not those induced by discrete transformations 

'.1/2+/::~/?7: .. *...... 
' = [ ( n + 1 ) / 2 - / u 1 / 2 m  n i s o d d  
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to obtain the monodromy matrix in the fundamental domain. It follows then, that the 
relation between the type of hyperbolic fixed points and the winding number generally 
is lost: It is only for the motion in the full domain that a periodic orbit is (inverse) 
hyperbolic when the winding number is (half) integer. 

4. An example 

Consider the Hamiltonian 

H ( 9 ,  P) = u 2 / 2 i  u2 f 2 i x 2 / 2  -A2y2/2.  (27) 

It has an unstable periodic orbit running along the x-axis, 

x(t j=x,cos(t)+u,sin(t)  y ( t j = O  

U ( [ ) =  -x,,sin(r)+u,cos(~) U( I )  = 0. 

A trajectory started on  the orbit with a little momentum in the y-direction does not 
return, so one would not expect to find self-focal points. After one period the mono- 
dromy matrix 1 in Cartesian coordinates is given by 

I' 0 0 o \  I -  1=( 0 0 1 0 
O cosh(AT) O sinh(AT)/A 

\O Asinh(AT) 0 cosh(AT) 

TL" --*-:- II ",-"^A.. ^I .La Aoc:-aA F,.-... l l l i  !-.a^"..^o tl.- I,.,.", ",.,.-A:""*-.. ^. 
L l l C  L I I a L l l n  mG 'l,,C""J ha, L11G " C I l L C U  l"llll ,Ll,, "LLaLu=c L l l L  I V c a I  C " U L " I I I ( 1 L L D  and 
yp accidently coincide with the global coordinates y, U (the orientation may differ 
however). Thus the transformation to configuration space coordinates does not alter 
1. The matrix element M,,=sinh(AT)/A is indeed always non-zero, so there are no 
self-focal points. Even though the transformation A does not alter the form of the 
monodromy matrix after one period, the relations between local and global coordinates 

transformation A has the form 
do ch2zge a!o!?g the orbit, eve!? fer the coordinates perpendicu!ar to the orbi!. Thc 

/ U  0 0 o \  
0 sign U 0 

A =  \ix l l u  J .  
0 0 sign U 

The discontinuity of yo (second column vector) and yp (fourth vector) and the 
divergence of yE (third vector) at the turning point U = O  is obvious. Nevertheless, the 
differential equation (16) for the linearized motion in the configuration space coordi- 
nates remains regular. The curvature K ,  (18c), is constant and simply given by K = -A*. 

In the phase space coordinates (12), the linear transformation matrix is 
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This matrix is nowhere singular, since the phase space velocity q2 = u 2 + x 2  = 2 Eo never 
vanishes. Of the transformed matrix a-'Ua we only list the interesting submatrix m, 

B Eckhardt and D Wintgen 

u x ( A 2 + l )  . u2-A2x2 . 
sinh(AT) sinh(AT) 

"AT) cosh(h T) - "AT) 
A 2 u 2 - x 2  b2 . b2 u x ( A 2 + 1  . 1. (32) 

M2 
In this coordinate system the periodic orbit has self-conjugate points, since m can 
have vanishing off-diagonal elements; the upper right corner vanishes whenever u2 = 

A2x2 and the lower left corner element vanishes for x 2  = A2u2. 
The calculation of the classical index is simple in both coordinate systems. In the 

phase space coordinates there are four self-conjugate points along the periodic orbit, 
hence q5 = 1 .  Using configuration space coordinates we arrive at the same result: there 
is no self-focal point, but two turning points. This supports our statement that in the 
configuration space coordinate system the winding number is the number of zeros of 
M,*( t )  plus the number of the reversals, whereas in the phase space coordinate system, 
only the zeros of m, , ( t )  need to be counted. 

The transformation to phase space coordinates regularizes the discontinuities of 
the configuration space coordinates at turning points by a smooth rotation of the 
coordinates perpendicualar to the orbit. This is why indices coming from turning points 
appear as indices from additional conjugate points in the phase space representation. 
This smooth rotation is obvious in the present example: In  both coordinate systems, 
the non-trivial coordinates only have components in (y, U )  direction. The transforma- 
tions A, and a, relating global (y ,  U) coordinates to the local ones ( ( yo ,  y p )  and 
(yq, yD), respectively) are 

Since A, and a1 are symplectic orthogonal, they coincide with the orthogonal matrix 
R in the polar decomposition. For the configuration space coordinates, the phase 
argdet(R,,+iR,,) jumps discontinuously by 71 at the turning points, but in the phase 
space coordinates, it increases smoothly by 271. 

This type of regularization is a general feature of the transformation from con- 
figuration space to phase space coordinates and is not restricted to the simple example 
given above. To see this, we calculate the polar decomposition TR of the matrix 
connecting M and m, equation (14). We find argdet(R, ,+iR,2)=e 'P with t a n p =  
2 p l I / ( 2 + p 3 .  If there is no turning point along the trajectory pll will always be finite; 
hence p( T ) = P ( O )  and the winding number associated with this transformation is 
zero. However, if the orbit is self-retracing, pII will diverge at the (two) turning points 
and p (  T) increases by 271. The singularity at each turning point in the configuration 
space representation gives rise to two additional self-conjugate points (one for each 
invariant manifold) in the regularized phase space representation. 

5. Concluding remark 

The transformation to the local position space coordinate system ( 1 0 )  is very useful 
for the standard approach to the semiclassical Green function, whereas the phase space 
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coordinates (12) are more appropriate for calculating the semiclassical Wigner propa- 
gator. After one period, equation (14) yields the transformation between both mono- 
dromy matrices. For the semiclassical density density of states only the winding number 
and the trace of the monodromy matrix are needed. 

The main advantage of the phase space coordinate system is that it is non-singular 
everywhere and that the corresponding linearized equations of motion (20) are numeri- 
cally well behaved. The configuration space coordinate system has discontinuities for 
self-retracing orbits. Even though the linearized equations of motion are non-singular, 
they can be cumbersome in numerical applications. The equations of motion derived 
from the principle of Maupertuis are numerically useless because they are singular at 
the boundary points. In this sense, we have achieved a regularization of Jacobi's 
equation of motion for small deviations from a periodic trajectory (Synge 1926). 

As to the assignment of symbols to periodic orbits, they require the identification 
of 'collision' regions in phase space, and these may be easier to locate in one coordinate 
system than in another (Eckhardt and Wintgen 1990). Nevertheless, certain properties 
of the orbit, such as its symbol length, are invariant if defined via the classical index. 

We therefore expect that even if there is no immediate interpretation of the index 
in terms of collisions, as e.g. in the anisotropic Kepler problem (Gutzwiller 1973,1977) 
or the collinear helium atom (Ezra el al 19911, the index will be a useful guide in the 
search for a symbolic code. 

Extensions of the calculations presented here to more than two degrees of freedom 
are conceivable, but presumably analytically rather involved. The dimension of the 
reduced matrices M then becomes 2( n - 1) x 2 ( n  - 1) for n degrees of freedom and the 
index can be based on degeneracies (vanishing determinants) of ( n  - 1) x ( n  - 1) sub- 
matrices. If the regions in phase space where these singularities occur are sufficiently 
separated, then one may label them and code trajectories by their visitation sequence. 
Complications can be expected from the possiblity that at the singularity the rank of 
these submatrices may be reduced by two or more rather than just one. An obvious 
pinball analogue is a point particle scattered elastically off several spheres in three- 
dimensional space (Chen ef al 1990). 
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